一個放電的超級電容就像一個與能量源短接的電路。所幸,很多能量采集源(如太陽能電池和微發電機)都可以驅動一個短接的電路,從0V起為一只超級電容直接充電。與各種能量源(如壓電或熱電能)接口的IC必須能夠驅動一個短接的電路,從而為超級電容充電。
業界在MPPT(最大峰值功率追蹤)方面做了很大努力,以從能量采集源最有效地獲得功率。當必須用恒壓方式為電池充電時,這種方案是可行的。電池充電器通常是一個dc/dc轉換器,它對能量源是一個恒定功率的負載,因此,采用MPPT在最高效點獲得能量就是有意義的。
與電池相反,超級電容不需要以恒壓充電,而以電源可以提供的最大電流充電時效率最高。一個簡單而有效的充電電路,用于太陽能電池陣列的開路電壓小 于超級電容額定電壓的情況。二極管可防止超級電容在太陽能電池無光照情況下對其反充電。如果能源的開路電壓大于超級電容的電壓,則超級電容需要采用分流穩 壓器做過壓保護。分流穩壓器是過壓保護一種廉價而簡單的方案,一旦超級電容充滿電,就無所謂是否消耗了過多的能量。
能量采集器就像一根能無限供水的水管,為一個水槽注水(好比一只超級電容)。如果水槽滿了,水管仍開著,水就會溢出。這與電池不同,電池供給能量有限,因此需要串聯穩壓器。
在電路里,超級電容為0V,從一塊太陽能電池芯獲取短路電流。隨著超級電容的充電,電流下降,這取決于太陽電池芯的電壓/電流特性。但超級電容總是 要獲取可能的最大電流,因此它以盡可能大的速率充電。中的電路采用了TLV3011太陽能電池芯,因為它內含了一個電壓基準,只需要約3μA的靜態電 流,并且它是一種漏極開路電池芯,當穩壓器關斷時,輸出就是開路的。電路采用了BAT54二極管,因為它在小電流時有低的正向壓降,即在正向電流小于 10μA時,正向電壓小于0.1V。
微發電機很適合于工業控制應用,如監控旋轉的機器,因為機器在工作時會發生振動。給出了一只微發電機的電壓-電流特性,它類似于一只太陽能電池 芯,能夠為一個短接電路提供最大的電流。微發電機還帶有一個二極管橋,可防止超級電容為發電機反向充電,這就得到了一個簡單的充電電路。
當超級電容充電時,泄漏電流會隨著時間而衰減,因為碳電極中的離子會擴散進入孔隙中。泄漏電流會穩定在一個均衡值,該值取決于電容、電壓和時間。泄漏電流與 電容芯成正比。超級電容均衡泄漏電流的經驗估計算法為室溫下1μA/F。中的150mF電容,在160小時后的泄漏電流為0.2μA和0.3μA。
泄漏電流隨溫度升高而呈指數上升。當溫度升高時,穩定到均衡值的時間會減小,因為離子擴散的速度更快。因此,這些電容從0V充電需要的時間最小。根據不同的 超級電容,這個電流范圍從5μA~50μA。設計者在為能量采集電路挑選超級電容時,應考慮測試這個最小充電電流。