1834年法國物理學家帕爾帖在銅絲的兩頭各接一根鉍絲,在將兩根鉍絲分別接到直流電源的正負極上,通電后,發現一個接頭變熱,另一個接頭變冷。這說明兩種不同材料組成的電回路在有直流電通過時,兩個接頭處分別發生了吸放熱現象。這就是熱電制冷的依據。半導體材料具有較高的熱電勢可以成功地用來做成小型熱電制冷器。圖1示出N型半導體和P型半導體構成的熱電偶制冷元件。用銅板和銅導線將N型半導體和P型半導體連接成一個回路,銅板和銅導線只起導電的作用。此時,一個接點變熱,一個接點變冷。如果電流方向反向,那么結點處的冷熱作用互易。
熱電制冷器的產冷量一般很小,所以不宜大規模和大制冷量使用。但由于它的靈活性強,簡單方便冷熱切換容易,非常適宜于微型制冷領域或有特殊要求的用冷場所。
熱電制冷的理論基礎是固體的熱電效應,在無外磁場存在時,它包括五個效應,導熱、焦耳熱損失、西伯克(Seebeck)效應、帕爾帖(Peltire)效應和湯姆遜(Thomson)效應。
一般的冷氣與冰箱運用氟氯化物當冷媒,造成臭氧層的被破壞.無冷媒冰箱(冷氣)因而是環境保護的重要因素.利用半導體之熱電效應,可制造一個無冷媒的冰箱。
這種發電方法是將熱能直接轉變成電能,其轉變效率受熱力學第二定律即柯諾特效率(Carnotefficiency)的限制.早在1822年西伯即已發現,因而熱電效應又叫西伯效應(Seebeckeffect)。